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SUMMARY

A theory is presented to predict the buckling temperature of an

axially compressed, uniformly heated ring-stiffened cylinder. The

cylinder buckles because of the interaction of the axial stress due to

applied compressive loads and the circumferential stress resulting

from restraint of thermal expansion by the rings. Buckling charts

covering a wide range of cylinder proportions are presented for both

clamped and simply supported cylinders. The buckling temperature for a

given axial loading is determined from a simple equation involving a

coefficient given in the buckling charts and the radius-thickness ratio

of the cylinder.

INTRODUCTION

One aspect of the structural-aerodynamic heating problem is the

effect of thermal stresses on buckling. Reference i reports the results

of an experimental investigation which indicated the effect of thermal

stresses on buckling and maximum strength for a variety of structures.

The results for the ring-stiffened cylinders indicated the compressive

buckling stress was reduced by thermal stresses. These thermal stresses

were in the circumferential direction and caused by the restraint of

thermal expansion in the vicinity of the rings.

Reference 2 presented a theoretical analysis of the buckling of a

simply supported cylinder due to this type of thermal stress alone. The

calculated buckling temperature of a steel cylinder with a radius-

thickness ratio of about 300 was found to be over 2,300 ° F; thus, there

appeared to be no problem in the practical temperature range of the

material. Calculations for other proportions were not given. For

larger values of radius-thickness ratio, the buckling temperature is

lower and, as shown later, thermal buckling can occur for cylinders of

practical proportions. The present paper presents a theoretical analysis
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for buckling of a cylinder subject to axial compression as well as thermal

stress for both simply supported and clamped end conditions. A comparison

of the theory with the experimental results of reference 1 is also given.

SYMBOLS

AR

am

B

D

E

k

kT

!

k x

cross-sectional area of ring

coefficient in deflection function

constant (see eq. (6))

plate flexural stiffness,

modulus of elasticity

Et3

12(l- _.2)

circumferential stress coefficient for arbitrary stress

di strlbution

temperature coefficient, " :_2

modified temperature coefficient applicable to cylinders with

flexible rings

axial stress coefficient, _2E

circumferential stress coefficient for uniform stress distri-

bution, _2E

i

1

6
C

L length of cylinder between rings

12Z 2

Mm = _m- 1)2+ p2-]2 + _

m,n,i integers

l) 4
L(m - 1)2 +

(m-i)2 
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r

s n

T

t

Vm

w

x,y

Z

7

Nm

operator defined in equation (A_)

radius of cylinder

Fourier components of circumferential stress

temperature

temperature difference between cylinder wall and ring, T - T R

thickness of cylinder wall

deflection function

radial deflection of cylinder wall

axial and circumferential coordinates (see fig. ]2)

L2 C.
_2

cylinder curvature parameter, _ VI -

coefficient of thermal expansion

ratio of cylinder length to circumferential buckle length, L/_

axial stress ratio; ratio of axial stress to the classical

Gx
cylinder buckling stress,

Et

_3(i - _2)r

modified axial stress ratio based on experimentally observed

reduction in cylinder buckling stress from classical value

Kroenecker delta, 5ran = 0 when m _ n and 5ran = 1 when

m = n

k circumferential buckle length

Polsson's ratio (_ equal 0.3 was used for all numerical

calculations)
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_X

_y

_y

axial compressive stress

circumferential compressive stress

average circumferential compressive stress

T r
temperature coefficient j (_SJ - c.R R)_

modified temperature coefficient applicable to cylinders with

flexible rings

deflectional stiffness of ring in radial direction

34

V4 differential operator, 8-_K+

_-_ inverse operator defined such that

Subscripts:

max maximum

R refers to ring

0 evaluated at T equal zero

Bars over symbols indicate average values.

_42B4 +_

_x2_ _

_-_W = W

L
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THEOIRY AND ASSUMPTIONS

The cylinder is assumed to have many rings which divide the cylinder

into bays of length L. The cylinder wall is at a uniform temperature

and the rings are at some lower temperature. This difference in tempera-

ture causes circumferential stresses which vary in the axial direction

and have the largest magnitudes in the vicinity of the rings. Combina-

tions of axial compression and temperature (circumferential thermal

stress) necessary to cause buckling were determined from the analyses

presented in the appendixes.

In appendix A, the problem considered is buckling of a cylinder

subjected to a uniform axial stress and a circumferential stress that

varies in the axial direction and is expressed as a general Fourier



series. In appendix B, the circumferential thermal stress resulting
from the temperature difference between the cylinder wall and rings is
determined; this result is expressed as a Fourier series in order to be
applicable to the buckling analysis of appendix A. Oneof the major
assumptions of the whole analysis is in applying the thermal stress
results to the buckling problem. It is assumedthat circumferential
stresses produced by the temperature rise of the cylinder can be used
in the buckling analysis. However, the deflections causedby the tem-
perature rise are neglected inasmuch as a perfect cylinder is assumed
in the buckling analysis. Somesupport of this assumption is given by
the fact that these deflections are generally small and not compatible
with the final buckle pattern.

In the stability analysis of appendix A, the modified equation of
equilibrium presented by Batdorf (ref. 3) was used. The buckle deflec-
tion was expressed as a trigonometric series and an infinite stability
determinant resulted whenthe series was substituted into the equilibrium
equation. For simply supported cylinders, the results obtained using the
modified equation are the sameas those that would be obtained by using
Donnell's eighth-order differential equation. However, as pointed out in
reference 3, the use of Donnell's equation for clamped cylinders may lead
to divergent trigonometric series but this problem is not encountered
with the use of the modified equation.

The usual assumptions of small-deflection cylinder theory together
with the assumptions implied by the use of the modified equilibrium
equation are present in the analysis. These assumptions include cer-
tain restrictions on the in-plane displacements at the end of the
cylinder. For the deflection functions used in this paper, the following
conditions are implied on the in-plane displacements at the ends of the
cylinder: for simply supported cylinders, free displacement in the axial
direction and zero displacement in the circumferential direction; and for
clamped cylinders, zero displacement in the axial direction and free dis-
placement in the circumferential direction. The condition of free dis-
placement in the circumferential direction for a clamped cylinder does
not seemto be too realistic but it is pointed out in reference 3 that
there is little difference in critical stress obtainedwith this
boundary condition and the critical stress obtained by other investi-
gators using a boundary condition that all edge displacements were zero.

The rings are assumedto be rigid against radial loads but are
allowed to expandbecause of a temperature rise. A correction which
allows for the ring expansion that occurs whenthe cylinder is heated and
loaded is given in a later section.
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THEORETICAL RESULTS

The results of the analysis are presented in figures 1 and 2 and in

tabular form in table I. Results are presented as a buckling temperature

coefficient v plotted against the cylinder curvature parameter Z for

various values of 7, the ratio of applied axial stress to the so-called

classical buckling stress. The buckling temperature can be calculated

as

T = _mETR + _V-tr (1)

or, if the coefficient of thermal expansion of ring and skin can be con-

sidered equal (_= i), then

A_ = _t. (2)
_,r

L
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In practice, T will represent the average skin temperature, TR the

average ring temperature, and AT the difference between these average

temperatures. The values of • shown are the lower of the two values

found for the symmetrical and antisymmetrical deflection patterns and

have been minimized with respect to the wavelength parameter 8, the

ratio of the cylinder length to circumferential buckle length. Although

the precise minimum was not found, the increments in _ were suitably

small so that little error is present in using the lowest value that was

calculated.

Inasmuch as the thermal stress is concentrated over the rings, many

terms in the deflection function are required to describe the buckle

pattern accurately, especially at large values of Z. Calculations were

made on an IBM 7090 electronic data processing system and by increasing

the order of the stability determinant suitable accuracy was achieved

except in some cases as indicated later. The results given are such

that using a determinant of one less order would yield a value of v no

more than _ percent greater. However, except for the larger values of

Z, most of the values of T given in the table differ by less than

1 percent from values obtained by using a determinant of one less order.

The order of determinant used as well as the value of 8 is given in

the table. In some cases it was not possible to get an accurate value

of T as the size of the determinant was limited by the computer program.

These points are omitted from the table but extrapolations based on

established calculations are shown by dashed lines in the figures. At
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low values of Z where buckling is associated with plate action rather

than cylinder action, it is possible for 7 to be greater than 1 and

calculations for these points are given in the table only. The results

given in figures 1 and 2 show that, as Z is increasedj 7 being held

constant, T becomes independent of Z. This is true for all values of

7 for the simply supported cylinder. However_ it is not completely

definite that this is true for the smaller values of 7 in the case of

the clamped cylinder because of the difficulty in obtaining an accurate

value of T. Although values are given only to Z = 1,000, calculations

for Z greater than 1,000 indicate the trend shown would continue.

The value of T for 7 equal to zero can be used to determine the

temperature at which a cylinder will buckle in the absence of axial

stress. For the range of Z in which T is independent of Z, the

buckling temperature is a function of r/t and the coefficient of thermal

expansion a, as indicated in figure 3 where the temperature rise neces-

sary to cause buckling of aluminum and stainless-steel cylinders is

plotted against r/t. A constant value of a w_s assumed for ring and

skin in each case. At low values of r/t the buckling temperature is

very high and is beyond the useful temperature range for the material.

However, at high values of r/t the buckling temperature can be low

enough that thermal buckling would have to be considered in the design of

a heated cylinder. It should be noted that the curves in figure 3 also

apply to values of 7 up to 0.7.

The buckling temperature of a simply supported cylinder subjected

to heating alone can also be obtained from the analysis of reference 2.

In the numerical example of reference 2, a buckling temperature rise of

2,380 ° F was calculated for a steel cylinder with r/t equal to 300.

It can be seen that this temperature is about three times the value shown

in figure 3. The difference is probably due to the boundary conditions

used in calculating the thermal stress as the other parts of the two

analyses are identical. Reference 2 assumed a one-bay cylinder and cal-

culated the thermal stress for simply supported ends. The present

analysis assumes many bays; this assumption effectively clamps the ends

as far as thermal stress is concerned. (See appendix B.)

For the range of Z in which v is independent of Z, the results

given in figures 1 and 2 can be cross plotted to give curves for the
variation of T with 7 as shown in figure 4. As expectedj when axial

compression is the dominant factor in buckling, there is little difference

between a clamped and simply supported cylinder. However, at small values

of 7j circumferential stress is the most important factor in buckling and

there is a significant difference between the results for a clamped

cylinder and the results for a simply supported cylinder. This difference

is consistent with that obtained for uniform circumferential compression.
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The curves of figure 4 indicate that an appreciable amount of com-

pression can be applied without reducing the temperature at which the

cylinder will buckle. For the clamped cylinder, the buckling temperature

can actually increase with applied load. This result appears to be con-

trary to intuition but it can be shown that the average circumferential

stress is declining even though the temperature is increasing.

It is of interest to note that in figure 4 T is zero for 7

approximately equal to 0.95. This result means that the theoretical

buckling stress for an unheated cylinder (T = 0) is about 95 percent of

the classical value because of the restraint of Poisson's expansion at

the rings or bulkheads.

The sharp break in the curves of figure 4 is the result of a mode

change which is illustrated in figure 5. The coefficient T is plotted

against _ for a clamped cylinder with Z equal to 50 and 7 equal to

0.6 and 0.7. For each value of 7, curves corresponding to the two

lowest buckling modes are shown. The controlling mode for 7 equal to

0.6 has a minimum value of T at _ equal to 5.4. For 7 equal 0.7

there is another minimum in the same region; however, there is a lower

minimum at _ equal to 2.4. It can be seen that a mode change has taken

place and that a sharp break will occur in a plot of the minimum value

of T against 7 when going from one mode to the other. At the lower

values of 7, where buckling is due primarily to circumferential stress_

the T - _ curves for the controlling mode shape are characterized by

rather flat minimums and require large stability determinants for con-

vergence. Calculations of the associated buckle deflection indicate

large deflections near the ends where the thermal stress is concentrated

and essentially zero deflection away from the ends. At larger values of

73 the mode shape changes, and the v - _ curves have sharper minimums

and do not require as large a stability determinant as the lower values

of 7- For this case the calculated buckle deflections are in a fairly

regular wave pattern over the entire length of the cylinder as is the

case for compressive loads acting alone.

i
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Effect of Thermal Stress Distribution on Buckling

As mentioned previously, the thermal stress is concentrated in the

vicinity of the rings as indicated in figure 6. The circumferential

stress at a ring (x = 0) can be obtained from equations (AS) and (BS) as

(_y(O) = _(_x + GET - G_ET R (3)
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The circumferential stress distribution was obtained from appendix B

and is shown for two values of Z and two values of Y in figure 6 as

the ratio of circumferential stress to circumferential stress at a ring

plotted against x/L. A study of figure 6 and additional thermal stress

calculations indicate that for cylinders of a given radius and thickness

the thermal stress distribution in the vicinity of the rings is unaffected

by increases in length beyond a certain value 3 and the thermal stress

away from the rings is essentially zero for these "long" cylinders. This

behavior is probably the reason that the buckling temperature is independ-

ent of length for the larger values of Z.

The average value of the circumferential stress @y is shown in

_y
figure 6 as the line denoted It is of interest to compare the

 y(O)
average value of the thermal buckling stress with the uniform circum-

ferential stress that causes buckling. Values of ky, the buckling

coefficient for uniform circumferential compression_ can be obtained as

a special case from the analysis in appendix A. Inasmuch as the thermal

stress over the ring can be obtained from the buckling coefficient kT_

a buckling coefficient corresponding to the average thermal stress is

_y
O_)k T. A comparison of the buckling coefficient for uniform circum-

ferential compression ky with the buckling coefficient for the average

_y
thermal stress

_-_0)_ is given in figure 7. A buckling coefficient
j-

based on cylinder length was used; this manner of presentation corre-

sponds to the way in which results are usually presented for uniform

circumferential compression.

At low values of Z the thermal stress distribution is almost

_y
uniform so

o-_o)_T and ky are almost identical and approach the value
j1

for a flat plate as Z approaches zero. As Z increases_ the thermal

stress distribution becomes similar to that shown in figure 6 and it can

be seen from figure 7 that the average thermal stress at buckling is

about three to four times the buckling stress for a uniform distribution

for both simply supported and clamped cylinders.

Effect of Ring Flexibility on Buckling

The results given in table I and figures 1 and 2 apply to rings

which do not deflect radially when the skin is heated or loaded in axial
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compression. The deflection an actual ring undergoes can be taken into
account as indicated in appendix B. The buckling temperature coeffi-
cient T' for nonrigid rings is given in terms of the rigid-ring solu-
tion plus an additional term involving the average circumferential
stress in the skin and the ratio of skin and ring stiffnesses. The
coefficient T' is given as

I

_y___ ELt+ T ERAR
(4)

It may be necessary in applying equation (4) to use an effective ring

area AR if the entire ring does not fully participate in resisting the

expansion of the skin. Values of _Y which are necessary for the

 y(O)
use of equation (4) have been calculated and are shown in figure 8

plotted against Z. It is seen that for Z small, _ approaches 1

because the stress distribution is nearly uniform. As Z increases,

_y
becomes proportional to 11_ which can be considered as propor-

tional to 1/L for r/t constant. Such a result conforms to the

observations made in the previous section, that the thermal stresses are

concentrated near the rings and are independent of cylinder length for

the larger values of Z. Thus for a given radius and thickness, the net

compression force resulting from the thermal stress is constant and the

average value of thermal stress is proportional to 1/L as indicated in

_y
figure 8. The oscillations of at higher values of T are about

_y(0)

one-half cycle out of phase with the oscillations of T in figures I

and 2. Thus, T_._., which may be thought of as an average stress

buckling coefficient, is a smoother function of Z than T. In the

%y
where is proportional to i/_, equation (4) can beregion

 y(0)
written independent of length for intermediate to large values of Z as

L
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APPLICATION OF RESULTS AND COMPARISON WITH EXPERIMENT

L

1

9
6
0

Modified Theory

Because of the discrepancy between experimental results and small-

deflection buckling theory for cylinders under axial compression the

present theory cannot be expected to predict experimental results

accurately for cases in which axial compression is the predominant factor

in buckling. It is necessary therefore to modify the results similar to

what has been done for cylinders under compression. Of course, any

modification should be such that experimental data for cylinders under

uniform compression agree with the modified theory when T equals zero.

Reference 4 presents an empirical approach to obtain a reduced buckling

stress for cylinders under uniform compression. The buckling stress is

given by

I

 x=l ' 1 E t (6)

In equation (6), B is an experimentally determined constant which may

be thought of as a measure of initial imperfections present in the

cylinder wall; if B is zero, equation (6) is the usual small-deflection

buckling equation. If a prime is used to indicate a modified buckling

ratio and a subscript zero used to indicate _ being equal to zero,

equation (6) can be written

(7)

A simple extension of this equation that will give a reduced value of %

for any value of T is

7o 1 + (8)

From the shape of the T - % interaction curve given in figure 4 it can

be seen that equation (8) will provide the proper amount of correction in
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the vicinity of T equal zero but, at lower values of 7 where the

curve is relatively flat and the circumferential stress is the pre-

dominant factor in buckling, little change in the interaction curve

will be obtained. Inasmuch as the buckling stress of a cylinder loaded

in circumferential compression agrees fairly well with theory, a correc-

tion should not be required where circumferential compression is the

major factor in buckling. Therefore, equation (8) may be expected to

give a reasonable estimate of the compressive buckling coefficient when

a cylinder is heated despite the limited amount of experimental data

presently available to substantiate such a correction. However, some

judgment must be exercised in applying equation (8) dependent on the

shape of the interaction curve. For example, in a region of the curve

where T increases with 7, as occurs for clamped cylinders, the type

of correction required is not clear.

Comparison of Theory and Experiment

In reference i, buckling test results are given for several

2024-T3 aluminum cylinders loaded in bending and uniformly heated.

Although the theory of appendix A applies to uniform compression only,

it is assumed that bending tests can be compared directly with the theory

for uniform compression. Theoretical studies such as reference 5 have

indicated that the maximum compressive stress at buckling for a cylinder

loaded in pure bending is essentially the classical buckling stress for

uniform compression. Experimental results have shown a small difference

between compression and bending (see ref. 5), but this is accounted for

by the choice of B in equation (8). A comparison of the results of ref-

erence i with the theory of the present paper, including the reduction in

axial buckling stress indicated in equation (8), is shown in figure 9.

The extreme fiber compressive stress at buckling is plotted against the

maximum cylinder temperature. The theoretical curves were calculated by

assuming simply supported ends, although assuming clamped ends would

yield essentially the same results for the range of variables encountered.

The correction for ring flexibility (eq. (5)) was used but did not alter

the results appreciably from the rigid-ring case.

In order to calculate the curves shown in figure 9, it is necessary

to know the variation of the physical quantities E and m with temper-

ature as well as the relationship of the skin and ring average tempera-

tures to the maximum cylinder temperature. The values of _ and E

that were used in the calculations are shown in figure lO. The difference

in expansion coefficient for the skin and the lower temperature ring was

neglected; therefore, only the difference in average ring and skin temper-

ature is required which is given in figure ll as a function of maximum

cylinder temperature. It was not necessary to use equation (8) to modify

the theory for the cylinder having L/r equal to 1/4 inasmuch as little

difference between small-deflection theory and experiment was found for

L
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this proportion as indicated by the room-temperature test point. For

the remaining cylinders a value of B equal 0.00030 was used in equa-

tion (8). It was found in reference 4 that this value gives results

which are in the middle of the experimental scatter band for 7075-T6

aluminum cylinders. The point for L/r equal to I which is below the

theory would lie above the theory if the lower limit of the scatter band

of the data of reference 4 were used to establish B. Thus, it appears

that the buckling theory of the present paper including the modification

given in equation (8) will agree with experimental results about as well

as the methods available to predict buckling at room temperature agree

with room-temperature buckling results. A better evaluation of the theory

could be obtained from cylinders with large values of r/t so that the

buckling temperature would be lower and in a more usable temperature range

for the material.

CONCLUSIONS

The buckling temperature of a ring-stiffened cylinder loaded in com-

pression is shown to be a function of the radius-thickness ratio of the

cylinder, the thermal expansion coefficient of the cylinder material, and

a buckling coefficient which is presented in tabular and graphical form

for both clamped and simply supported cylinders. The buckling coefficient

is a function of the ratio of applied axial stress to the classical

buckling stress and the cylinder curvature parameter. From the results

of the analysis, the following conclusions can be drawn:

i. For moderate to large values of the curvature parameter, the

cylinder buckling temperature is essentially independent of length.

2. For small values of the radius-thickness ratio buckling of the

cylinder due to temperature alone occurs beyond the useful temperature

range for most materials. For larger values of the radius-thickness ratio

such buckling can occur at temperatures within the usable temperature

range for the material.

3. A cylinder can support a significant amount of axial load without

reducing the buckling temperature.

4. For moderate to large values of the curvature parameter, there

is little difference between the buckling temperatures for clamped and

simply supported cylinders of the same proportions when the axial stress

approaches the classical buckling stress. At lower values of axial stress

there is a substantial difference.

5. The theoretical buckling stress for an unheated cylinder under

uniform axial compression is about 95 percent of the classical value due

to the restraint of Poisson expansion at the ends.
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A modification of the theory is given which takes into account the

reduction in buckling stress from the classical value for cylinders under

axial compression. Comparison of the modified theory with experiment

indicates agreement comparable to that obtained by using existing

empirical methods to predict room-temperature compressive buckling
results.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Air Force Base, Va., Jan. 15, 1962. L
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APPENDIX A

BUCKLING OF A CIRCULAR CYLINDER UNDER UNIFORM AXIAL COMPRESSION

AND AN ARBITRARY DISTRIBUTION OF CIRCUMFERENTIAL STRESS

L

i
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6
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The equation of equilibrium governing the buckling of a cylindrical

shell subjected to in-plane direct stresses only is (see ref. 3)

Dew + Et V-4 _4w _2w _2w

r-_ _x 4 + _x t _x 2 + _yt --_y2 0
(_)

Dividing equation (A1) by D gives

ze v-4 $4w
V4w+ 12_ _x-X+ kx

_:2 _2w

12 _x 2

+ k _2 _2W _ Sn

L2 _y2 n_- 1 + 50n
cos n__.__x=0 (A2)

L

where.

L 2

z= ,,2

_'X = --

and the arbitrary distribution of

kx_2D

L2t

_y is given by the Fourier series

k_2D _ Sn= -- cos n_x_y
L2t n=O 1 + 80n L

F___

The sn values are defined so that qy at x equal zero is given by

k2D
_y(o)= _ (A3)
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This definition requires that

Sn = 1 (A4)
n=0 1 + 8On

S n

It can then be seen that is the ratio of the amplitude of the
l+50n

nth component of stress to the stress at x equal zero.

The method used for the solution of equation (A2) is the Galerkin

method. (See ref. 3.) In this method the differential equation of

equilibrium is represented as

Q(w)= o (AS)

L

1
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where in equation (A2)

12.Z 2 V_ 4 _)4
Q = '_ + 7- _x--g+ _

=2 _2 _2 _2 Sn n_x
+ k _ cos

L 2 _x 2 S2 _y2 1 + 50n L

The deflection w is taken as

oo

w= _ amY m

m=l

The set of functions V m must satisfy boundary conditions but not neces-

sarily the equilibrium equation. The coefficients am are determined

from the condition

_0 h SO L VmQ(w ) dx dy = 0 (A6)

The details of the solution follow.
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Simply Supported Ends

The orientation of the coordinate system wi_h respect to the

cylinder is shown in figure 12. An expression for w which satisfies

the differential equation Jn the y-direction and the condition of simple

support at the ends of each bay is

oo

w : sin _---___ m_x
am sin (A7)

m=l L

and Vm can be identified as

Vm = sin _ sin m_x (AS)
h L

Substitution of equations (A7) and (AS) into equation (A6) and inte-

grating over the limits yields

oo

amMm+l k_2 Z ai(Sm-i - Sm+i) = 0 (m = i, 2, 3, • • .) (A9)
2 i=l

where by definition

and

s_ i = si

Mm = _m- 1) 2 + _212 + 12Z2(m- i)4 - (m - 1)2kx
_k[(m - 1)2 + _2j]2

The condition necessary for buckling is that the determinant of the

coefficients of equations (A9) equal zero. This determinant can be
written as
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m=l

m=2

m=3

aI a2 a 3

Z_2 So + s2 -sI + s3 -s2 + s4

-sI + s3 2M5 - sO + s4 -sI + s5
_2k

Z_4
-s2 + s4 -sI + s_ sO + s6

_2k

. ° °

o (_o)

For kx equal zero, this result corresponds to that obtained in refer-

ence 2 for buckling of a simply supported cylinder subjected to an

arbitrary distribution of circumferential stress. Reference 2 is based

on Donnell's eighth-order differential equation.

Equation (AlO) may be solved for k for given values of kx if

the sn values are known. By using an increasing number of terms and

equations, the solution will converge. The solution for k should be

minimized with respect to _ to give the lowest buckling stress. The

values of _ should be restricted so that an integral number of waves

appear around the cylinder circumference. However, this number is

usually large enough that _ may be thought of as a continuous function.

L
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Clamped Ends

An expression for w which satisfies the condition of clamped ends

w = sin _ m=l_ am_ Os(m - 1)_-cos(m+ 1)_x]nj

and V m is therefore

Vm = sin _os(m- 1)_- cos(m + 1)_

(All)
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Performing a similar operation to that for the simply supported cylinder

yields

am_(1 + 51m)+ Mm+_- am-2Mm(1- 81m)(1- 52m)- am+2Mm+2

+ _2k _ ai(Sm_i_ 2 - 2Sm__ + Sm_i+ 2 - Sm+i_2 + 2Sm+ i - sin+i+2)= 0
2 i=l

(m = i, 2, 3, • • .) (AI3)

where

s_i = si

Setting the determinant of the coefficients of equations (AIS) equal to

zero yields the buckling stress

m=l

m=2

m=3

aI a2 a 3 • . .

_- Ds 0 + _s 2 - sh -2s I + 3e 3 - s9 _-_+ s0 - 3s 2 + 5s 4 - s6 • . .

_2k _2k

"2el + 3s 3 - s9 _ - 2SO + s2 + 2s4 - s6 -_I + 2s5 - s7 " " "

-_ _ _'s0 + 2s 2 s4 + 2s 6 s8 • . .
+ s0 - 5s 2 + 3s4 - s6 -s I + 2s 5 - s7 - - -

_2k

= o (Az4)

The solution of equation (AI4) is similar to that indicated for equa-

tion (AlO).
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APPENDIXB

STRUCTURALBEHAVIOROFRING-STIFFENEDCYLINDERLOADEDIN

AXIAL COMPRESSIONANDHEATEDUNIFORMLY

Thermal Stress

It is assumedthat the skin is at a constant temperature and the
rings are at somelower constant temperature, the difference in tempera-
ture being AT. Also there are many rings so that each bay may be

assumed to have the same deflection curve which will be symmetrical

about the middle of the bay. Deflections will not vary around the

circumference and will be given by the solution of the following (see

ref. 6):

D d4_ _2w w
_-_+ °xt --+dx2 --Etr2 +

dw I = 0
x=O
x=L

 .trIi (B1)

Deflections are measured positive inward from the position an unstressed

cylinder would assume without rings and subjected to a uniform tempera-

ture T. The solution for w is

t_ 2

•,27(i£- S)z(_x£ + _)._ ,_I(_w -- sinh e cos

sinh cosh + 8 sin -_ cos
2 2

2 2 2 2

- _ cosh e sin 2_>sinh elx - L>sin L_IX - L_ -
_t (B2)

 f30--
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where

= _x r !

z

1211-2kT - _2

The deflection w will cause a circumferential strain w.
_, thus, Oy

will be given from the stress-strain relations as

r

In order to apply this result to the buckling analysis, it is necessary

to expand qy in a Fourier series. This expansion can be done by

substituting equation (B2) into equation (B3) and expanding this result

in a series recalling the defining relationship given in equations (A3)

and (A4). The resulting Fourier coefficients sn are given by

S n = 8e¢(cosh 8 - cos _)(e 2 + ¢2) (n, even)

__(e2 + _2 + n2_2) 2 - 4_2n2_2_<_ sinh 8 + 8 sin _)

sn=O (n, odd)

(B4)

and k is identified as

k = _k_ + _ (B_)
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The only stress component which produces a net force over the cylinder

length is so; thus So_- equals _Y the ratio of the average cir-

cumferential stress to the stress at a ring.

Buckling

After the thermal stress is determined 3 the results can be used in

the buckling analysis of appendix A to calculate the buckling tempera-

ture. Inasmuch as the odd numbered sn are zero, each stability deter-

minant (eqs. (A10) and (A14)) can be factored into two determinants, one

containing terms involving the odd-numbered deflection coefficients and

the other containing terms involving even-numbered deflection coeffi-

cients. The two determinants correspond to deflection patterns symmet-

rical and antisymmetrical about a plane perpendicular to the axis of the

cylinder at the midlength point. The two determinants for the simply

supported cylinders are

L

1

9
6
0

m=l

m=3

m=5

a I a 3 a5 • . •

s_ _

_2(_kx+_) _0+_2 -_2+s4 -_4 +s6 • •

-"2 + _', _2(_. +_) - 80_ "6 -"2 + "8 • • •

-s 4 + s6 -s2 + s 8 _2(#kx + kT) SO + el0 • . .

= o (B6)

m=2

m_4

m=6

a2 a4 a6 • . .

_ _ s0 + s4 -s2 + s6 -s4 + s8 • . .

_ sO + s8 -s2 + Sl0 • . .

_7 - s0 + s12 . . .

-_. + _8 -"2 + "1o _2(_ + _',

=o (B7)
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For the clamped cylinder the following two determinants are

obtained:

L

i

9
6

0

aI a3 _

= i 2 _l + M_) _s2 _____ + sO _ 3s 2 + 3s_ _ s6 s2 - _s_ + 3s6 - s8

' _ - 2s0 + 2s2 - s4 + 2s6 - s8 _ + so 2_2 + s4 - s6 + 2s8 - slO

-;_I-..-- _SC'. ?s2 + s4 _ s6 + 2s8 _ si0 _ - 2s + 2s2 s8 + 2s10 - Slf_

(B6)

a 2 a_

-21,14 2(_j_ + _

1_ "--_ - 2s 0 + 2_ 2 - s6 ÷ 2s 8 - slO

m 4 + :_o - 2_2 + 2s6 s8 _,kx +

m = 6 s2 - 2s_ + 2s8 - slO --. - + - _
÷

_6 ' " '

s, - 2s.. ÷ 2s 8 - slO . .

':_% (B_)

i
-- 2s 0 + 2s 2 - sl0 + 2s12 - s14 • .

i

I

Values of kT calculated by using the various stability determi-

nants revealed a more suitable buckling parameter. The new parameter T

is such that the buckling temperature is given in terms of r/t rather

than L/t as indicated in the following equation:

T = C_TR +Tt
_ r

(BlO)

The parameter T is similar to the parameter 7 as kT is similar to

k x. The parameter T is related to kT by

-r = _2 kT (Bll)

12_/T - _2 Z

Values of kT were found to range through several orders of magnitude

with increasing values of Z whereas _ shows only a small variation

as shown in figures i and 2. Hence, results are better shown in terms

of r and values are more easily interpolated.
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Nonrigid rings

In order to correct for ring flexibility it will be assumed that

ring deflections can be neglected during buckling, but the effect of

these deflections will be included in calculating the circumferential

thermal stresses. In other words, the ring is assumed to deflect

because of the application of _x and _y stresses but is assumed to

be rigid during the buckling process. This correction is accomplished

as follows. The first boundary condition on w in equation (B1)

becomes

Wlx=O=x=L (_° _RTR)r - 8y r@L-_t
(B_)

where @ is the deflectional stiffness of the ring and _y is the

average circumferential stress in the skin. For a ring that resists

radial deflection by stretching in the circumferential direction,

is given by

= ARER (B13)

r2

L

1

9
6
0

With the boundary condition (B12) and repeating the thermal stress

analysis as before, it is found that k can be taken as

k = _kx + _ 12(1 - _2)(_)2_y ELt (B14)

with sn defined as before and kT

cient for nonrigid rings. However,

so
!

and kT is therefore given by

the buckling temperature coeffi-

_y is related to k and sO by

So ELt h _
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L

i

9
6
0

This equation can be rewritten in terms of _', T, and 7, and with

the ring stiffness @ given by equation (B13), equation (BI6) appears

as

1°yT' = T + _7 + ELt (BI7)

3(1 - _2) _y(0) ERA R

Thus, the buckling temperature coefficient for cylinders with flexible

rings equals the coefficient for rigid rings plus an additional term

which is proportional to the average circumferential stress in the

cylinder.
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TABI_ I, BUC](LI_G COEfFICIenTS FC_ RING-ST]3rFENED CYL_S

SUME6T TO AXIAL CC@(PRF_SIO_ AND T_EEMAL S_SS

81m_le support

Order of 7 i

7 _ _ MOde e_t t

.6 ).c_

•7 I 2.96o
.8 I 2._7

.50 • .8_k

T

.80

.80

.70

S_trJ c_ 4

Sy_tr_ eal

Sy_tr J<_/

S_trJ c_al 3

symmetrC cal 3

S_tr_ e_.l

Sy1_et r! cal

_tr_ c_ 3

Symmetr_ "cad 3

Sy_mlet r Jc@.l

C:Ummped

[
z=_

0 6.178 1.50

2 ! 6.084 •.90

._ i 5._6 1._

,6 5.89o 1.9o

:7 5.8_o 1._5
5 -79 O 1-h9

•9 5.7 _o 1._5
• 9.724 i._9

2.0 9.171 1.55

3.0 4.617 1 ._

.0 k ,028 1.15

_.5 3.728 1.05

9.0 3.531 .90

5.5 i _._Ol

Order of

Mode determln_nt

_triaal 6

Symmetrical 9

Symmetrical 5

Sy_etrlcal 5

&_etrical 5

Symmtrlcal 9

S_trleal 9

S_trlcal

Symmtrlcal _

S_trlcal 5

8-,._etrtcal 5

Ss_etrteal 5

S_._etrical 5

"70 i Symmetrical 5

0 1 1._l 1.10 S_m_tr[ r'_l i _ 0 2.907 1.90 Mtrte_ 5

.2 i,_ 1.09_ symetrtcal 5 .2 2._5 1.90 ! Mtrlcal 9

1.16o 5

.9783 Symmmt r! cal I 3 .6 2,_7 l.gO _ S_trleal 5

:_ ._ I s_t,_ I _ / -_ I _'_6 I _'_° I _r_ [
...... Symmetrl eal

Z-6

0 1.252 1-2_T- - S_-_r: cal I ' 0 [ 2.06_ I 1.60 Symmetrical

.2 i.i_2 1,19 | 8_etrlcal ! 2 _ 2 186 1 90 S_trlc_l

.k I.IKO I.C_ ] 8ym_Zr _ cal _ Symmetrical._ ! 2._57 i._5

.6 1.i08 1,00 | 8_tr _ cal .6 }.lgh | Z.hO Symmetrical

-7 1 1.118 .90 | S_trlcal .7 _.i_ i._O Syl_trlcal

.8 1.189 ,89 1 Sy_mmmtrS cal .8 _ 6.282 1.70 8ylm_etr Ical

•9 4 i._ I ._ L S)mm_tr!eal ,9 8"£87 I 2.65 Symmetrlc_l

..lo I_._, ! _._ _"_"_Ant isymm_ tr icaJ[

.15 i]_5_ [_3.60 _ Antl,ywm .... __

7--F: T%7 o..... ,
•2 1.390 I I._3 | Sylm_tr Ica_ _ 3

-7 I 5 "195 1.25 ISz_me_r_a_l I 3

.8 I _''7P'2 I 1.60 Antts_metrteal / 3

.9 I L2e_ I 1.6o [ Antt_trtcal I 3

i< 1
o [ 1.5_ [ 5, i .45 Symmetr _cal

i •35 Sy_met r Ica| k.2

2,111 1.3 Syltetr Ical 5

3.068 1.80 1 Anttaymmetrleal 3

.8 3._01 1.60 l A_ttaymm_trieal 3

' .99 3.997 1.60 1 Ant isy_m_ trical 5

Z 8

,2 2.6k _/ I 1.60 5_etrt cal

5.66iI / 1.6o sy_.,_rteal i 9

.6 6.15_ 5

.7 / 7.o_ 2._o e_=_t_t_al
2.80 Ant i symme_ri c_l 5

.8 ] 7.9_i 3.00 Ant I _jlmet r ical 5

•9 I 9'08( 3._ Amt i symmetrical 5

•_ _ _:l!_ _ l"_ __J'_='_'_al 5
= lO

T ...... " _,JoZ- 7 7....0 2.587 • .72

.2 3._69 1.72 Sy_et rl cal | 6

._ k.961 2.55 Sym=e .... I 6
• 6.080 2.90 A_tlsy_etrl e_l 6

7._87 I 3.32 AntiBymm_tric_l 6

•9 8.o_ i 3.59 AntlB_a_etrlc81 [ 6

Z 17.9

._ 11._1_._.1,2I 1._1._1_.__,_--+.,o__,,..=,._"_"..... , o 7,._2_-_.5U F _- ..... ' z_i....
k .6 | _._02 | 5.25 |Antt_trlcal I

1.80 Ant I_ymm_ trl c_l•7 [ 1.957 m _ : .7 | 4.6231 _._ m_tt_trioal
_, .8 [ _.TI_ _ _.40 mAntisymmtrtc_l.8 1.7_

• 9 ! 1.%9 ] L.60 / Amtls_trical 9 I -9 [ _.7_1/}._5 m_r_t'_rtc_l

.__ 1._ _,,=,_,,_ __ _" _ ._ i _.7__L _'_ / _''_= .....

0 2.092 2.30 ............. Z" 25 -- ---- r
Symm_tr te_l T ' 0 7 } '_69 _ ''20 Symte ..... 9

.2 2.0_ 2.20 1 fl_trieml | 5 1 .2 | _.669 i }.KO I Antls_mmmetrieal 9.w 2._ 2,_o 1Anti_tric_l ] 5 I .I¢ | }.8_ , ).kO Anti,_trie_l 9

.6 1,841 I 2.10 ] Antl_y_metrlc_l ] 5 I .6 | _.i_2 i _._O Amti_trical 9

•7 1.719 2.00 Antlsynm_trical | 5 I -7 | _._C_ [ 3.60 AmtlSyllmetricml 9

.8 1.590 | 1.8") I Antts_t_leal / 5 I .8 [ 4.901' i 5"70 Anti'Itrtc_l 9

I .9 I 1,289 I 1.60 Antlsltrical | 5 -9--_} 5_ A_tls_trica&

I "_1 1._ I _'_L _1,_*.._i _ _ ' __ i_ _.._._
- ...... Z=55

,2 I 2.C4_ ] 2.80 1 8ymmmtrlcal | 5] .2 _ }.611 _ }.80 Antlsyllmetrical 9•_ I l._ i 2._ : Anttsl_rict_l { 91 .4 ).919 j _.00 Anti_mmetrtcal 9

.6 1 1.969 I 2.50 I Antimtrieal _ 5/ ,6 ) b._29 i _._0 ) Anti_trlc_l 9

•7 1 2.O10 [ 2,1¢O I Anti_trical | )] '7 ] _.8)} i _.60 'r kntis_trlca.l 9

• 8 I 2.15_ | 2._0 | Symmetrical | 5_ .8 ] 5,M42 i 5._) ! Anti._m_trtc_l 9

• 9 ) 1.555 I 1"70 I By_metrlcml [ 5 / ,9 I 2._0 ] 1._} l 8ylmmetrlc_i 9

.9_] .2_ I 1.6o [ _t,t:_ | 5] .9_ ] .621o ] 1.7o i s_,.tn,_al 9
................. t
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TABLE I.- BUCKLING COEFFICIENTS FOB RING-STIFFENED CYLINI_RS

SUBJECT TO AXIAL CGMPRESSION AND THEF_4AL S_ESS - Concluded

_le o_ I I TC_°dOrder of _v

7 v Mode determinant .......... ! _ i Mode

z = 5o

°[!59 2.o81 3.5o Symmetrical 5 1 0 i 3'416 [4.40 I Antls_etrical

2.057 3.40 Anti_etrlcal 5 .2 1 3.668 I 4.60 Antlsymmetrlcal

[4 2.050 3.30 Antl symmetrical 5 .4 ! 4.OhO 5.00 Antis_etrical

• 2.093 3.10 Antisymmetrical 5 .6 ; 4.601 5.40 Antisymmetrlcal

2.138 3.00 S_trical 5 -7 i 3-385 2.40 _etrical

[8 .9556 2.10 Symmetrical 5 .8 i i.136 I 2.20 Symmetrical

.1009 1.90 Sym_trl cal 5 .9 '_ .2614 2.00 Syn_etrical

-.07848 1.80 Symmetrical 5 __'__ _i .03571 2.00 Sy_trical

Order of

determinant

Z = 60

0 2 2.O85 3.90 AntisyJmetrlcal 5 0
2.063 3.70 Anti symmetrical 5 .2

:4 2.o_2 I 3.70 Antisymmetrlcal , 5 .g

.6 2.076 3.30 Antisymmetrlcal i 5 .6

-7 2.065 3.10 Sy_metrical I 5 .7

.8 .7663 2.20 Sy_met rical 5 .8

./141 2.00 Sy_m_trl cal 5 .9

•9 -.06140 2.00 Sy_et rl cal .95.95 5 i

Z = 71.5

Oi_ 2.087 4.10 Antlsymmetrlcal

.2 2.067 4 .iO Antlsy_mmet rical

.4 2.096 3.90 Antisymmetrlcal

2.061 5.60 Antl symmetrical

: 2.o61 3.4o Symmetrical

.9392 2.30 Sy_metrlcal

.2502 2.20 Sy_etrlcal

.02966 2 .iO Symmetri cal

A_tlsymmetrical

Antisy._etrical

Antisy_mnetrical

Antisy_metrical

Antlsymmetrical

Antisy_etrical

Antlsy_etrical

Antisymmetrical

0 2.087 8.40 Antis_etrical

.2 2.067 8.20 Anti_etrical

.4 2 •055 7.80 Antlsy_etrical

.6 2.061 7.40 Antl symmmetrical

•7 i 2.080 7 .00 I Antlsy_etrical

•8 1.614 4.60 Antisy-_etrlcal

•9 I -3596 I 4.20 1 Antis_etrical

•9___1 "_°o6_5152° t _o_r_

Antisym_trical

•2 I 2.085 I 11.2 1 Antlsymz_trical

.6 i 2.112 I 10.3 [ Antisymmetric_l

.? _ 2.1h6 I 9.6 I Anti symmetrical

.8 _ 1.668 1 6.601 Symmetrical

•9 I ._ 1 6.20 1 s_le_l
Anti _trlcal

ll

ll

ll

ll

ll

ii

9

9

32

32

32

12

12

12

]2

]2

o 16 I
.2 I 2.066 I 6.o0 ]
.4 2.053 5.8o

.6 2.057I 5.4°I
•7 1 2.073 9._
.8 1.523 ] 3.60

I .9 1 .3664 3.50

__LJ_:P 3_ I 3"_°1

Antis_etrical 12

Antisyumetrical ]2

Antisy_m_etricsl ]2

Antisymmetrical 12

Antisymmetrical 12

Antisy_metrical 19

Antis_etrical 12

Antisymmetrical ]2

i .9 I ._% I a.To I

3.4_o _.9o

3.687 5.io

4.052 5.4o

_.57 _ 5.8o

2.291 2.50

.9251 2.40

.24_o 2._o

.0_858 2.20

Antisymmetrical 9

Ant_s_lmmetrical 9

Antlsys_metrical 9

Antisymmetrlcal 9

Symmetrical 9

Symmetrical 9

_etrical 9

S_trical 9

o I
• 2 | 3.713 5.5o

._ | _.o6i 5.8o

.6 | 4._7 2.8o
•7[ 2.350 1 2-65 i

.8 | i.]26 2.55 1

• 9 | . 42L° 2.45

•95 I .1815 2.4o

Z = 15o

_-.95 3.60

0 3.5L o 7.60 [

2 7.8o

3.794 8.20 I:4 _.1_
8.804.811

:8 3.920 4.00

Z 286

0 2 5.605 i0.45.925 10.8

5.191 ii.8

' .7 4.225 5.10

_.9o
.8 i:_5 5.o0

:_5 1 .o?_ 4._o

Z = lO00

%_/. • --_i Antisymmetrical

.2 Anti symmetrical

.4 Anti sy_etrical

Antl symmetrical

AntisyI_etrlcal

Antisy_etrical

:9 9•25 Antisy_etrlcal

JO5_2 [ 99'2551 Antisy_etrical

Antisym_etrical i0

Antis_mnetrical i0

Antis_etrical 9

Sy_etrieal 8

Symmetrical 6

S_trlcal 6

S_trical 6

Symmetrical 6

Antisymmetrlcal i0

Antisymmetrical iO

Antis_trical i0

Antis_trical i0

Antisy_etrical iO

Anti s_etrical i0

Antisy_etrical i0

Ant_sy_m_trical l0

Antisy_etrical ]2

Antisymmetrical 32

Antis_etrical ]2

Antisy_metrical ]2

Antisy_metrical 7

Antisymmetrical 7

Symmetrical 7

Symmetrical 7

Antis_trlcal 13

Antis_trical 13

Antisy_m_trical 13

Antisy_etrical 13

Antisylmetrlcal 8

Antisymmetrical 8

Antisymmetrical 8

Antisy_mmetrical 8

15

i3

13

ll

32

ii

21

ll

t_
i c

I-_

o (
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Figure i.- Temperature buckling coefficient for axially compressed

simply supported ring-stiffened cylinders.
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Figure 2.- Temperature buckling coefficient for axially compressed

clamped ring-stiffened cylinders.
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Figure 3.- Temperature increase necessary to cause buckling for simply

supported cylinders. 7 < 0.7; Z > 60.

3

• t .2 ,3 .4 .5 o6 .7 .8 .9

Y

Figure 4.- Variation of T with 7 for moderate to large values of Z.

z > _5oo.



31

14

O

!

12

I0

8

6

4

y =

6

7

s'

I S

11

11

pfP

_J

0 I 2 3 4 5 6

Figure 5.- Plot illustrating change of buckle shape as axial stress

Is increased. _ = L/h.



32

1.0

•8 _

.6 /
A

• !

/

o

--o2

--°4

............... --_ ._-_-_-_-::::__......

0 .I .2 .3 .4 .5 .6 .7 .8 .9 1.0

X

U

I

I--'

0

0"y

_y (0

1.0

.8

.6

.4

0

--.2

--,4

t I

, l
v,

(a) Z = 71.5.

I I

y = .2

..... y= .8

I

e'.__y.y--

Cry (0)

-:-------I....................

#I

'I I

I l
J i

ii i J
• i I

! i

i\

O .I .2 .3 .4 .5 .6

_.'..__.z_3.... /-}-4
J _,j,

t

L I

'd
I
i

.7 .8 .9 I .0

X

U

(lo) z = 54o.

Figure 6.- Variation of circumferential stress along cylinder length.
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Figure 7.- Comparison of the average thermal buckling stress with the

buckling stress for uniform circumferential compression.
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2024T-3 aluminum alloy.
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